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Abstract

A first application is made of Brownian One-Body Dynamics to nuclear multifragmentation. A gold nucleus is compressed
to double density and then let free to evolve under the combined influence of the effective one-body field and the residual
two-body collision processes, with the effects of the fluctuations included whenever local spinodal instability occurs. The
system quickly expands into a hollow and unstable configuration which transforms into several intermediate-mass fragments.
The analysis of the resulting fragment pattern suggests that the model provides a physically reasonable description of nuclear
multifragmentation processes. (€ 1997 Published by Elsevier Science B.V.
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1. Introduction

The investigation of nuclear fragmentation phenom-
ena in heavy-ion collisions poses significant theoreti-
cal challenges, since the evolution of a given system
typically involves an entire spectrum of physical en-
vironments, occurs far from equilibrium, presents in-
stabilities and dynamical bifurcations, and may even
lead to the production of additional particles. At in-
termediate energies, the nuclear Boltzmann equation
[1] forms a very successful framework for under-
standing a variety of features associated with nuclear
collisions [2,3]. It describes the development of the
nucleon phase-space density in the self-consistent ef-
fective one-body field as it is being subjected to the
average effect of the residual two-body scatterings.
When augmented by a stochastic term representing the

fluctuating effects of the two-body collisions, the re-
sulting Boltzmann-Langevin model is appropriate for
addressing processes involving instabilities and bifur-
cations [4].

Stochastic one-body models have the advantage
over the standard mean-trajectory descriptions that
they can propagate the system all the way from the
initial nuclei, through dynamical bifurcations, and to
the assembly of individual (and generally excited)
primary fragments.

However, the Boltzmann-Langevin model is still too
computer demanding to offer a convenient tool for
addressing realistic scenarios. Fortunately, both qual-
itative physical insight and quantitative results can
be obtained with suitable approximations to the full
theory. In the approximate methods developed earlier
[5,6], the effect of the fluctuations induced by the
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two-body collisions on the most important unstable
modes is simulated by means of a simple noise of a
suitable amplitude. The procedure is implemented at
the time when the system enters the spinodal region
and fragmentation is due to the amplification of the
introduced fluctuations. The main disadvantage of this
simple method is that it does not allow to take into
account the time dependence of the fluctuation source
and cannot be applied to situations in which dynamical
effects (such as a very fast expansion, for instance)
play a major role.

A particularly simple and powerful approximate
tool is provided by the Brownian One-Body (BOB)
dynamics model developed recently [7]. The present
paper presents the first application of this dynamical
approach to nuclear multifragmentation.

Relative to the standard nuclear Boltzmann treat-
ment, the BOB dynamics introduces noise in the mean
field whenever the local conditions correspond to spin-
odal instability. The noise is adjusted so that it would
produce the same growth rate as the full Boltzmann-
Langevin theory for the most unstable mode in nuclear
matter prepared at that density and temperature. Since
this local tuning of the Brownian term can be done an-
alytically, the additional numerical effort is only mi-
nor and, consequently, the model presents a powerful
means for making dynamical simulations of nuclear
collisions.

2. Brownian one-body dynamics

In one-body transport theories the system is de-
scribed in terms of the phase-space density f(s,?),
where we use s = (r, p) to denote a point in phase
space, with the measure ds = 4 drdp/h’. In the frame-
work of the Boltzmann-Langevin theory, the time evo-
lution of f(s) is governed by a stochastic equation of
motion,

%:{h[f],f}+1'[f]+51[f]. (D

The first term on the rh.s. produces the collision-
less propagation of f in the self-consistent one-body
field described by the effective Hamiltonian A(s) =
P’ /2m+U(r). The second source of evolution, I f],
is the term included in the standard BUU descrip-
tion representing the average effect of the residual

Pauli-suppressed two-body collisions. The third term,
SI[ f1, is the Langevin term, which accounts for the
fluctuating part of the two-body collisions [4].

The basic idea behind the BOB treatment [7] is to
approximate the effect of the stochastic collision term
by means of a suitable stochastic one-body potential
oU(r,t). The corresponding equation of motion is
then obtained by making the following replacement in

(1),

af
ip’
where 8F (r,t) = 30U/dr is the associated Brownian
force (having < 6F »= 0). Since the Langevin term
in (1) is ordinarily assumed to be Markovian and lo-
cal in space, the stochastic force is also assumed to be
local in time and space. As shown in Ref. [7] for ide-
alized two-dimensional nuclear matter, it is possible to
adjust the strength of the correlation function for the
Brownian force in such a manner that the agitation of
the most unstable modes is well reproduced. This can
be achieved by tuning the variance of the Brownian
force < 8F(r,t)6F (r,t) >=2Dy(r,t),

8I1[f]1 — 8I[f1=~8F[f]- (2)
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Here Fj is the Landau parameter associated with uni-
form nuclear matter prepared at a density and temper-
ature equal to the local values p and T, respectively,
and it characterizes the response to harmonic density
changes of a given wave number. The most unstable
mode has the wave number k and the frequency wy.
Finally, we have introduced the local collision rate per
particle, N(p,T).

Thus the BOB method appears to be well suited
for studies of multifragmentation by the occurrence of
instabilities.

3. Results and discussion

We report here on a first application of the BOB
treatment to a three-dimensional nuclear multifrag-
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mentation scenario. In order to make contact with ear-
lier studies [ 8], we consider the disassembly of a gold
nucleus that was prepared in a suitably compressed
configuration.

If the gold nucleus is initially compressed to
twice the normal density, it will expand into a quasi-
stationary hollow configuration which is unstable
against multifragmentation [8]. A qualitatively sim-
ilar result was obtained for central collisions of nio-
bium nuclei [9]. For significantly smaller compres-
sions the system will exhibit weakly damped large-
amplitude monopole oscillations and eventually settle
into a hot compound nucleus. On the other hand, for
significantly larger compressions the outwards motion
resulting from the release of the compressional en-
ergy is sufficient to overcome the cohesive forces of
nuclear matter and the system will be torn apart into
rapidly receding very light fragments. For our present
purposes, it is therefore most instructive to consider
the near-critical compression of two. Moreover the
formation of such compressed composite sources is
observed in several dynamical simulations of actual
collisions between heavy ions at intermediate energies
[9-11].

The BUU calculations performed in Ref. [8] ex-
hibit a sensitivity to the adopted number of test par-
ticles per nucleon, N. This quantity is a numerical
parameter governing the density of the phase-space
coverage. In particular, it was found that with A/ =
300 the spherical symmetry is so well preserved (as it
should be mathematically) that the hollow configura-
tion eventually recontracts and no multifragmentation
occurs, whereas with A" = 100 the coverage is suffi-
ciently coarse to allow the unstable density irregular-
ities to grow, leading to a multifragmented final con-
figuration. In the BOB simulations this sensitivity to
numerical parameters is absent because the strength of
the stochastic force is larger than the numerical noise.

The evolution of the radial density profile is shown
in Fig. 1. It is obtained by performing an angular aver-
age for each system and subsequently averaging over a
sample of 100 similarly prepared systems. It is clearly
seen how the initially uniform density develops a hol-
low interior, with the matter concentrated within a rel-
atively thin shell that remains nearly stationary for a
considerable length of time.

During this stage the matter in the shell condenses
into a number of prefragments. As it is shownin Fig. 1,

-
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Fig. 1. Evolution of the density profile. The time evolution of the
radial density profile is shown in the form of a contour plot. The
heavy contour corresponds to normal nuclear density. The density
contours are separated by Ap = 0.005 fm~? and dashed contours
are employed in the regions of compression. Contour plots of the
density p’ (8, @) =4m /Ao f rdrp(r), obtained for a single event
at the final time ¢ =200 fm/c, are shown in the insert.

at the time ¢ = 200 fm/c the prefragments are located
in a thin shell of radius R = 10 fm. As an example of
their spatial distribution, we show in the insert of Fig. 1
contour plots of the density p'(8, ¢) = :—: [ rdrp(r)
calculated for a single event. Ap indicates the total
number of nucleons, Ag = 197. Since the matter distri-
bution is essentially concentrated near a spherical sur-
face, it is natural to analyze the density irregularities
in terms of spherical harmonics. This can be conve-
niently done by introducing multipole moments [8],

d
) = ‘/Z‘;/T; PP (F) Yo (). 4)

The superscript identifies the particular event n. Since
the systems have been sampled from an ensemble that
has rotational invariance, all the magnetic components
of a given multipolarity are equivalent. It therefore
suffices to study the average total strength of a given
multipolarity L,

oL ==Y |yl >, (5)
M

where < - > denotes the ensemble average. This quan-
tity is a useful measure of the total multipolarity distri-
bution of the fluctuation strength. Its normalization is
such that the monopole term is unity, oo = 1. Further-
more, the higher multipole strength can be obtained
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Table 1

Multipole strength of idealized configurations. The multipole co-
efficients o, associated with a number of especially simple multi-
fragment configurations consisting of N touching spheres of equal
size. For N = 4 the centers form an equilateral tetrahedron (ob-
tained, for example, by occupying every second corner of a cube),
for N = 6 they are located on the faces of a cube, for N = 8 they
form the corners of a cube, and for N = 12a they sit on the edges
of a cube; for the alternative configuration N = 12b, the spheres
are centered on the faces of the twelve regular pentagons that form
a dodecahedron. These special geometries have also been consid-
ered in Ref. [12] where the potential barrier was calculated for
each multifragment channel as a function of the root-mean-square
size of the configuration

L N=4 N=6 N=8 N=12a N=12b

2 0.00 0.00 0.00 0.00 0.00
3 0.10 0 0 0 0

4 0.010 0.060 0.064 0.014 0.00
5 0.00 0 0 0 0

6 0.00 0.00 0.016 0.032 0.030
7 0.00 0 0 0 0

8 0.00 0.00 0.00 0.00 0.00

by performing a Legendre expansion of the two-point
reduced angular correlation function,

Fia=Y oL PL(cosbir) (6)

L>0

where

/rldr1 /errz < 8p" (r1) 8p" (r2) >
N

In order to provide a feeling for the relationship
between the multipolarity strength distribution and
the underlying multifragment configurations, we show
in Table 1 the values of o for a number of espe-
cially simple configurations consisting of symmetric
arrangements of N touching fragments of equal size.
The dominant multipolarity can be roughly predicted
by counting the number of fragments along a major
circle around the configuration. For example, for N =
6 one encounters four fragments as one circles the
configuration in the xy plane, and the count is approx-
imately six for the configurations with N = 12,

With this preparation, we now turn to the analysis
of the sample of 100 multifragmentation events. Fig.
2 shows the multipolarity strength distribution at suc-
cessive times during the evolution. At the outset, each
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Fig. 2. Multipole strength distribution. The multipole strength
coefficients o7 are shown at various points in time, ¢ = 0, 60,
120, 180 fm/c, as the initially compressed gold nucleus expands
towards a fragmenting hollow shell. The results are obtained by
averaging over 100 events.

mode is agitated to a degree depending on the num-
ber of test particles employed. By using A = 200 we
ensure that this numerical noise is unimportant rela-
tive to the physical noise generated by the two-body
collisions. Since the test particles are randomly dis-
tributed, the numerical noise is white, yielding a con-
stant (but insignificant) contribution for each multipo-
larity. The physical noise is also approximately white,
as can be seen from the multipole expansion obtained
in Ref. [13]. Consequently the different multipolari-
ties are about equally agitated at early times. During
the early expansion stage, the bulk of the nucleus is
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Fig. 3. Time evolution of the multipole coefficients. The time
dependence of several multipole strength coefficients oz, corre-
sponding to the scenario considered in Fig. 1.

still above the critical density for spinodal decomposi-
tion. However, the expanding surface region is unsta-
ble, as the dilute matter seeks to increase its binding.
This leads to an amplification of the surface irregular-
ities, and determines the initial growth of the multipo-
larity strengths observed in fig. 2. As the bulk density
of the system subsequently enters into the region of
spinodal instability, the unstable bulk modes are am-
plified as well. It should be noticed that, because of
the nuclear surface, the monopole mode (L = Q) is
agitated since the beginning of the process, while the
multipolarities are excited by the stochastic force only
when the local spinodal instability occurs. Once the
system becomes dilute, this favours the rapid growth
of the monopole mode and the prompt development of
a hollow configuration. Meanwhile, the various multi-
poles are agitated by the Brownian force and the asso-
ciated strength starts to grow, with the most unstable
modes increasing most rapidly. Once the hollow con-
figuration has been formed, there is little change in
the strength distribution, except for a continued over-
all growth, as the amplified irregularities relatively
rapidly condense into a number of intermediate-mass
fragments. The multiplicity and the characteristics of
the fragments obtained are determined primarily by
the dominant multipolarities.

A different view of the time evolution is shown in
Fig. 3 in which some of the multipole coefficients
presented in Fig. 2 are plotted as functions of time.
The early exponential growth characteristic of unsta-
ble modes is apparent, and the eventual leveling off
at the time when the fragments are fully formed is

density cul.
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Fig. 4. Fragment muitiplicity. The time evolution of the average
prefragment multiplicity, as obtained by analyzing that part of the
density distribution that exceeds a specified cut-off value, pcy =
0.05 (solid), 0.07 (dash), 0.09 (dots) fm—3.

consistent with the magnitudes shown in Table 1. The
final multipole strength is concentrated around L ~
4, suggesting a final fragment multiplicity of around
N = 6, based on the insight provided by the idealized
configurations shown in Table 1.

This expectation is indeed borne out by a quanti-
tative analysis of the matter density distribution, as
illustrated in Fig. 4. By employing a certain density
cut-off, it is possible to determine how many distinct
pre-fragments are present at each time during a given
evolution. Fig. 4 shows the resulting fragment multi-
plicity as a function of time, as obtained with differ-
ent cut-off values. At early times it is most instruc-
tive to use a fairly large value of the density cut-off,
since the system is still well connected (and the “frag-
ments” are then merely local density enhancements).
At late times, when the fragments are well separated,
and the nucleon vapor has dispersed sufficiently, the
fragment analysis is insensitive to the cut-off value.
Indeed, we observe a convergence of the results ob-
tained with three different cut-off values at ¢t ~ 150
fm/c when the condensation is completed. Moreover,
the fragment multiplicity is then indeed around N =~ 6,
as already surmised from the multipole strength dis-
tribution.

We finally show the distribution of fragment sizes.
Fig. 5 shows the fragment charge distribution, as ob-
tained at ¢ = 200 fm/c with the lowest density cut-
off value of p = 0.05 fm™>. We observe a rather
broad distribution of fragment sizes, with a concentra-
tion near carbon-like fragments. It should be pointed
out that a significant fraction of the initial matter is
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Fig. 5. Fragment charge distribution. The fragment charge distri-
bution as obtained by analyzing the density at time ¢ = 200 fm/c
with the smallest density cut, pey =0.05 fm~3.

emitted in the form of individual nucleons, or other
very light particles, so the matter contained in the
intermediate-mass fragments is typically less than half
of the total. The emergence of several intermediate-
mass fragments is a reflection of the fact that certain
unstable multipoles dominate the dynamics. Also, as
is evident from the multipolarity strength distribution,
the dynamics effectively suppresses the development
of high multipolarities, thereby preventing the forma-
tion of very small primary fragments.

While the characteristics (such as the wavelength
and the growth time) of the most important modes are
not very much dependent on the values of density and
temperature inside the spinodal region, it should be no-
ticed that the resulting fragment size decreases when
diluting the system. Therefore our results depend on
the value of the initial compression (and the induced
expansion velocity) given to the system. Larger frag-
ments can be obtained for less expanding system, as
in the case considered in Ref. [6].

4. Concluding remarks

In this paper, we have presented a first application
of the Brownian One-Body dynamics model to nuclear
multifragmentation. This model is a recently devel-
oped stochastic mean-field description which provides
a simple approximation to the Boltzmann-Langevin
theory, itself a parameter-free extension of the nuclear
Boltzmann equation that incorporates the fluctuating
part of the collision integral. Moreover, the Brownian
One-Body dynamics can be easily incorporated into
existing test-particle implementations of the standard
nuclear Boltzmann model and is therefore a very con-
venient tool for addressing processes in which dynam-

ical bifurcations occur (such processes are beyond the
standard treatment which treats only the average evo-
lution).

In order to assess the practical utility of the treat-
ment, we have considered an idealized multifragmen-
tation scenario in which gold nuclei are initially com-
pressed to double density and followed as they expand
into hollow configurations that quickly condense into
several intermediate-mass fragments, while shedding
off a large number of unbound nucleons. The results
appear physically reasonable, suggesting that applica-
tion to actual nuclear collisions is meaningful. Con-
sequently, studies of cases under experimental inves-
tigation are planned.
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